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Abstract 
 
Traditionally, symmetric multiprocessors have used modest numbers of 
processors.  Since many of them were bus-based systems, they inherently lacked 
scalability to what might be referred to as moderate-sized systems.  With the 
advent of the Sun HPC 10000 and the SGI Origin, we now have symmetric 
multiprocessors that have successfully scaled to moderate-sized systems.  In fact, 
SGI has had some success at scaling the Origin into the lower end of the range of 
large systems.  The first symmetric multiprocessor to make that claim was the 
Convex Exemplar.  But based on our experience at the Distributed Center located 
at NRAD, San Diego, CA (now the Naval Command Control and Ocean 
Surveillance Center), its overall performance and scalability left something to be 
desired. 

This report presents the results from runs involving a variety of programs on the 
SGI Origins and Sun HPC 10000s located at the U.S. Army Research Laboratory 
(ARL)-MSRC, the Naval Research Laboratory (NRL-DC), Washington, DC, and 
other places.  Some of these codes (e.g., F3D) are shared memory codes using 
OPENMP or its predecessors.  The remaining codes use message passing (mostly 
MPI, but one PVM code was tested as well).  Additionally, a limited number of 
runs were made with the CTH code when using processors on more than one 
Sun HPC 10000.  While most of these codes ran well, some codes did require 
modifications.  Additionally, in the process of making these measurements, the 
authors gained useful insights as to what does and does not work well on these 
systems. 
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1. Introduction 

Several supercomputer architectures are viable today.  MPPs, such as the Cray 
T3E, offer a large number of processors, each with its own nonshared memory.  
In MPP machines, when one processor needs to access data in the memory of 
another processor, the processor that ʺowns‶ the data must explicitly send the 
data to the requesting processor.*   

In contrast to distributed memory architectures are shared multiprocessor SMP 
machines, such as the Sun E10000, which share memory among all the 
processors.  In between these two examples is the SMP cluster (such as an IBM 
SP).  Here, a small number (e.g., 2–16 in the various implementations of the IBM 
SPs configured with SMP nodes) of processors share memory, and the machine is 
made up of a large number of these SMP nodes.  As in more traditional MPPs, 
explicit cooperation between two processors is required to transfer data from one 
SMP node to another. 

Another intermediate architecture is the cc-NUMA machine, such as the SGI 
Origin 2000, where all the memory is logically shared but physically distributed.  
Here, two processors (one node) share local memory, but any processor can 
access all memory locations in the machine without the aid of any other 
processor.  There can be significant differences in the designs and 
implementations of this class of system from vendor to vendor.  As a result, some 
systems are much better suited for certain classes of problems—systems from 
SGI are heavily marketed in the scientific computing market, while systems from 
HP, Sequent, and Data General are more frequently marketed to the 
commercial/database market. 

Several programming models exist today, and each is supported on one or more 
computer architectures.  While MPI was developed for distributed memory 
machines (MPPs), it can and has been implemented on SMP and shared memory 
machines.  Writing shared memory code is perhaps easier than writing MPI 
code.  But many codes today are written in MPI due to the popularity of the MPP 
machines for the last several years.  When an MPI version of a code already 
exists, the programmer might as well consider using it, even if it would not be 
their choice if writing the code from scratch.  So then it becomes a performance 
question as to whether a shared memory version or an MPI version of the code is 

                                                      
* When using SHMEM (or equivalent) calls on systems that support them, programs may 

explicitly instruct processors to either put data into the memory of other nodes, or get data from 
the memory of remote nodes.  However, this is very different from cache-coherent shared-memory 
symmetric multiprocessors, where the data resides in a globally accessible/coherent memory 
system accessed automatically using standard load and store instructions. 
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most suitable on a non-MPP machine that provides efficient support for MPI, as 
almost all machines now do.   

As the performance runs presented in this report show, no single machine has a 
monopoly on the best performance with all programming models.  While the 
Cray T3E does very well on MPI codes, it cannot run most shared memory codes.  
While some other machines can run all programming models, their performance 
varies, with each machine performing best on one code or another. 

The purpose of this report is not to explain the results or conclude that one 
machine is better than another.  Rather, its sole purpose is to document the 
results that different groups have reported, so readers are better equipped to 
come to their own conclusions about the merits of the hardware, programming 
paradigms, and other related issues.  Furthermore, while some of the codes 
mentioned in this report were tuned for one or more of these machines, tuning 
can be a major undertaking.  As a result, for HPC codes that are commercially 
available and/or maintained by other sites, the authors have little or no ability to 
tune them for the specific machines.  Instead, the authors of those codes tuned 
their own codes. 

The authors made these measurements as unbiasedly as possible.  In fact, many 
of these results came from benchmarking efforts associated with procurement 
efforts (all such data reported in this report came from runs done in-house).  
Additionally, selecting which results to report was based on the perceived 
importance and merits of the codes in question; no results were excluded from 
this report because they violated a preconceived notion.  As such, there are 
examples of different machines excelling for different codes.  Some readers may 
wish to consider issues such as cost effectiveness, but this report does not include 
any cost data.  Most likely, the faster machine is not always the most cost 
effective. 

Other issues not addressed in this report or only briefly addressed are as follows:   

 (1) the stability of systems, 

 (2) the scalability of systems to very large numbers of processors, 

 (3) problems with the compilers and/or the operating systems, 

 (4) the relative merits of the input/output (I/O) systems, 

 (5) issues involving the queuing of jobs, 

 (6) the requirements of the highly varied user community that uses the 
resources provided by the DOD HPCM Program, and  

 (7) performance, profiling, and debugging tools. 
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2. Brief Observations 

The following observations have been collected from a number of sources. 

 • HPF runs better on the SGI Origin than on the IBM SP (Wierschke 1997). 

 • HPF runs best on the Cray T3E since the Portland Group first implements 
new ideas on it (Shires 2000). 

 • In theory, jobs that run well on the SGI Origin should run well on the Sun 
HPC 10000.  In practice, some codes would not compile, others would not 
run (at first), and many required some degree of tuning. 

 • Care should be taken to avoid ʺoverloading‶ (more processes/threads 
actively running than there are processors) any of the shared memory 
systems, since overloading can result in significant performance 
degradation and a significant increase in CPU time. 

 • By itself, automatic parallelization is frequently of limited value; however, 
it may improve the performance of some programs parallelized using 
compiler directives. 

 • Many codes run well on either the Sun or SGI systems, showing 
reasonable levels of performance and scalability. 

 • Some codes will show significantly better per processor and/or overall 
performance on the SGI Origin than on either the Cray T3E or the IBM SP 
with P2SC processors. 

 • The performance of the Sun HPC 10000 is frequently reported to be 
between that of the SGI Origin 2000 with 300-MHz R12000 processors and 
the SGI Origin 2000 with 195-MHz R10000 processors. 

 • For some vectorizable codes, the shared memory programming paradigm 
is an excellent choice for parallelizing programs that are difficult to 
parallelize.   

 • For some codes, HPF is still the most natural programming paradigm 
(Mohan 1999). 

 • For projects requiring high levels of scalability (e.g., 128 or more 
processors), the IBM SP or the Cray T3E are better choices 
(Namburu 1999). 

 • Large MPPs tend to have stability problems; 128-processor Origins are 
particularly susceptible to periods of instability. 
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 • Some performance differences are caused by design tradeoffs.  The data 
show that some of these design tradeoffs sacrifice efficiency for peak speed 
and vice versa.  Both approaches are of value and need to be considered 
when evaluating the merits of different systems. 

3. Performance 

Figures 1–6 and Tables 1–8 show performance results from various sources.  
Some of these runs were made explicitly for benchmarking the performance of a 
particular system, other runs were made as part of a porting/tuning effort, and a 
few of the runs were made for other reasons.  As such, there has been no 
systematic attempt made to identify the reasons why a particular code runs 
faster on one machine than another.  The authors assume that in some cases, 
additional tuning could improve the performance of a particular code on a 
particular machine.  However, such tuning is beyond the scope of this report.  
Furthermore, when a code is not locally written/maintained, there may be little 
or no opportunity for the user to tune a code. 

In the following CTH benchmark runs for Figure 1 and Table 2, the number of 
computational cells was increased by a factor of 2 each time the number of 
processors was doubled.  This was done to maintain a constant number of 
computational cells per processor, which keeps the computation to 
communication ratio constant.  In this set of benchmarks, the number of 
iterations was fixed, meaning that perfect scaling results in constant benchmark 
run times.  The difference in the run time on the 64-processor Origin 2000 and the 
128-processor Origin 2000 is the direct result of the increase in the average 
memory latency as one increases the size of an Origin 2000. 

For the runs in Figure 2 and Table 3, the grid was incrementally refined by 
decreasing the characteristic cell length in each direction by the cubed root of two 
each time the number of processors doubled.  In these runs, the number of 
iterations was not fixed.  Instead, the number of iterations approximately 
increased by the cube root of two each time the number of processors doubled, 
since the time step decreases as a result of finer mesh.  When ideal scaling occurs, 
the Grind Time will decrease by half every time the number of processors is 
doubled.  This results from the units of Grind Time being microseconds/zone/cycle.  
Since the time per cycle is expected to remain constant and the amount of work 
per cycle doubled, the amount of time/zone/cycle should be halved.  The 
amount of time/cycle should remain constant, as in Table 2.  It is worthwhile 
noting how closely the performance of these runs matches the ideal performance.  
Additionally, the performance of the 300-MHz Origin 2000 and the 400-MHz Sun 
HPC 10000 is very similar for both these runs and those involving F3D (see 
Figures 3 and 4 and Tables 4 and 5). 
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Figures 3 and 4 and Tables 4–6 show the performance of two different versions of 
the implicit CFD code F3D for three problem sizes.  The problem sizes range 
from 1-million to 206-million grid points without a significant decrease in the per 
processor performance.  This is an indication that it is possible to tune an HPC 
code for a cache-based architecture.  Tables 7 and 8 contain results for two other 
CFD codes. 

Figures 5 and 6 and Tables 9 and 10 demonstrate the effect on performance and 
the waste of CPU time that can occur when an SMP becomes overloaded.  The 
program used for these measurements was the shared memory version of F3D.  
It ran the 1-million grid point test case. 

4. Summary 

We have provided a number of observations and performance data from a 
variety of sources for a number of representative codes.  These codes were run 
on the SGI Origin 2000 and the Sun HPC 10000.  In many cases, there were also 
runs made on other commonly used HPC systems.  Additionally, some of the 
tables provide comparisons of the performance achievable when using various 
programming paradigms.  The last two tables demonstrate the inefficiency of 
allowing an SMP to become overloaded.  It is hoped that this report and, in 
particular, the figures and data tables will enable the reader to better evaluate the 
merits of these systems in relation to his or her needs. 
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Figure 1.  CTH run times scaling the data set size in proportion to the number of  
processors used (data set supplied by Raju Namburu of the U.S. Army  
Research Laboratory, Aberdeen Proving Ground, MD). 
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Figure 2.  CTH run times (data set supplied by Steve Schraml of the U.S. Army Research 
Laboratory, Aberdeen Proving Ground, MD). 
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Figure 3a.  The performance of the shared memory version of the F3D code when run on  
modern scalable SMPs (1-million grid point test case).* 
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Figure 3b.  The performance of the distributed memory version of the F3D code when  
run on a modern scalable SMP/MPPs (1-million grid point test case).* 

 

                                                      
* The speeds have been adjusted to remove startup and termination costs. 
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Figure 4.  The performance of the shared memory version of the F3D code when run on  
modern scalable SMPs (59-million grid point test case).* 
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Figure 5.  The effect on performance and the consumption of CPU time from running a 

parallel job on an overloaded HP V-Class. 
 
                                                      

* The speeds have been adjusted to remove startup and termination costs. 
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Figure 6.  The effect on performance and the consumption of CPU time from running a 

parallel job on an overloaded SGI Origin 2000. 
 

 

 

Table 1.  Miscellaneous benchmarking runs. 

Program/Dataset SGI (300-MHz R12000 Origin) 
(hh:mm/no. of processors) 

Sun (400-MHz UltraSPARC II) 
(hh:mm/no. of processors) 

Gaussian 98 Ran Failed to run 
Overflow (MPI version) 2:40/24 3:25/24 
CTH/128.in 6:58/64 

7:31/56 
6:14/64 

POP 3:18/16 Failed to compile 
Gamess 0:19/12 0:12/12 
Xpatch 4:23/1 6:23/1 
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Table 2.  CTH benchmark runs.a, b 

 
System 

 
Processor Speed 

(MHz) 

 
Peak Performance 

(MFLOPS) 

No. of 
Processors 

 
Run Time 

(s) 
SGI Origin 2000 
(64-processor system) 

300 600 1 
2 
4 
8 

16 

1178 
1439 
1427 
2089 
1811 

SGI Origin 2000 
(128-processor system) 

300 600 32 
48 
64 
96 

128 

3144 
3544 
3423 
3339 
3676 

Cray T3E-900 450 900 128 1732 
IBM SP 
(P2SC) 

135 540 64 
128 

4822 
4433 

Sun HPC 10000 400 800 1 
2 
4 
8 

16 
32 
48 
64 

1971 
1986 
2092 
2331 
2506 
2749 
2501 
2895 

Sun HPC 10000 
(96-processor dataset) 

400 800 64 4391 

Sun HPC 10000 
(128-processor dataset) 

400 800 64 5673 

a Data set courtesy of Raju Namburu, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD. 
b The job size was scaled in proportion to the number of processors. 
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Table 3.  Additional CTH results.a, b 

 
Grind Time 

(µs/zone/cycle) 

 
System 

Processor 
Speed 
(MHz) 

 
Peak Performance 

(MFLOPS) 

No. of 
Processors 

Actual Idealb 
SGI Origin 2000 
(128 processor) 

300 600 1 
2 
4 
8 

16 
32 
48 
64 
96 

36.979 
20.479 
10.355 
7.2749 
4.0035 
2.0599 
1.4815 
1.2456 
0.73997 

NA 
NA 
NA 

7.2749 
3.6375 
1.8187 
1.2125 
0.90936 
0.60624 

SGI Origin 2000 
(128 processor) 

195 390 1 53.155 NA 

Sun HPC 10000 400 800 1 
2 
4 
8 

16 
32 
48 
60 
63 
64 

47.558 
25.622 
11.875 
7.0330 
3.7468 
1.8792 
1.2385 
1.1170 
1.1075 
1.1332 

NA 
NA 
NA 

7.0330 
3.5165 
1.7583 
1.1722 
0.93773 
0.89308 
0.87913 

2 Sun HPC 1000 
connected using 
ATM 
(OC-12) 

400 800 2 
4 
8 

16 
32 
48 
64 
96 

24.357 
12.635 
8.0182 
4.0605 
2.1539 
1.5136 
1.3593 
0.92424 

NA 
NA 

8.0182 
4.0091 
2.0046 
1.3364 
1.0023 
0.66818 

IBM SP (Power 2) 66.7 267 1 
2 
4 
8 

16 
32 
64 

100.24 
50.12 
26.83 
15.23 
8.13 
4.09 
1.69 

NA 
NA 
NA 

15.230 
7.615 
3.808 
1.904 

a The job size was scaled in proportion to the number of processors (Kimsey et al. 1998; Schraml and Kimsey  
  2000). 
b The ideal values are extrapolated from the performance of runs using eight processors. 
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Table 4. The performance of various versions of the F3D code when run on modern 
scalable systems (1-million grid point test case).a 

Speed 
 

System 
Peak Processor 

Speed 
(MFLOPS) 

No. of 
Processors Used 

 
Version 

(time steps/hr) MFLOPS 
SGI R10K O2K 390 8 Compiler Directives 793 1.04E3 
SGI R12K O2K 600 8 SHMEM 382 4.99E2 
SGI R10K O2K 390 32 Compiler Directives 2138 2.79E3 
SGI R12K O2K 600 

600 
32 SHMEM 

Compiler Directives 
989 

2877 
1.29E3 
3.76E3 

SGI R10K O2K 390 48 Compiler Directives 2725 3.56E3 
SGI R12K O2K 600 

600 
48 SHMEM 

Compiler Directives 
1083 
3545 

1.42E3 
4.63E3 

SGI R10K O2K 390 64 Compiler Directives 2601 3.40E3 
SGI R12K O2K 600 

600 
64 SHMEM 

Compiler Directives 
1050 
3694 

1.37E3 
4.83E3 

SGI R10K O2K 390 88 Compiler Directives 3619 4.73E3 
SGI R12K O2K 600 

600 
88 SHMEM 

Compiler Directives 
1320 
5087 

1.73E3 
6.65E3 

Cray T3E-1200 1200 8 SHMEM 349 4.56E2 
  32  1062 1.39E3 
  48  1431 1.87E3 
  64  1705 2.23E3 
  88  2443 3.19E3 
  128  2948 3.85E3 
IBM SP 160 (MHz) 640 8 MPI 199 2.60E2 
  32  342 4.47E2 
  48  420 5.49E2 
  64  423 5.52E2 
  88  396 5.18E2 
Sun HPC 10000 800 8 Compiler Directives 999 1.31E3 
  32  2619 3.64E3 
  48  3093 4.04E3 
  56  3391 4.43E3 
  64  2819 3.68E3 
HP V-Class 1760 8 Compiler Directives 1632 2.13E3 
  14  2392 3.13E3 

a For additional details, see Behr et al. (2000). 
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Table 5.  The performance of the shared memory version of the F3D code when run on 
modern scalable SMPs (59-million grid point test case). 

Speed System Peak Processor Speed 
(MFLOPS) 

No. of Processors Used 
(time steps/hr) MFLOPS 

SGI R12K 
Origin 

600 1 
16 
32 
48 
64 
96 

124 

2.3 
33 
59 
73 
91 

135 
153 

1.79E2 
2.57E3 
4.59E3 
5.68E3 
7.08E3 
1.05E4 
1.19E4 

Sun HPC 
10000 

800 1 
8 

16 
32 
48 
56 
64 

2.1 
15.1 
26 
45 
61 
70 
73 

1.63E2 
1.18E3 
2.02E3 
3.50E3 
4.75E3 
5.45E3 
5.68E3 

Table 6.  The performance of the shared memory version of the F3D code when run on 
modern scalable SMPs (206-million grid point test case). 

Speed System Peak Processor Speed 
(MFLOPS) 

No. of Processors Used 
(time steps/hr) MFLOPS 

SGI R12K 
Origin 

600 1 
16 
32 
48 
64 
96 

124 

0.62 
7.4 

15.2 
18 
26 
38 
48 

1.67E2 
2.00E3 
4.10E3 
4.86E3 
2.02E3 
1.03E4 
1.30E4 

Table 7.  A comparison of the performance of the shared memory implementation of the 
CFD code Overflow and the PVM implementation of the same code.a 

 
Run Time 

(s) 

 
System 

 
Peak Processor Speed 

(MFLOPS) 

No. of Processors 
Used 

Shared Memoryb PVM 
SGI R10K 
Origin 

390 1 
4 
8 

16 
31 

959 
318 
184 
129 

96 

N/A 
335 
191 
117 

N/Ac 
a For a complete discussion of these results, see Hisley et al. (1998). 
b The shared memory implementation combined compiler directives and the automatic parallelization facility 

(-pfa). 
c The 31-processor PVM run was not made because it was too difficult to decompose the grids with the 

available tools. 
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Table 8.  The performance of LES (a CFD code using direct simulation of large eddies).a, b 

System Peak Processor Speed 
(MFLOPS) 

No. of Processors Used Run Time 
(s) 

SGI R12K Origin 600 1 1232 
  2 619 
  4 314 
  16 153 

a 64 H 64 grid. 
b The program was parallelized using the SPMD programming style with OpenMP. 

 

Table 9.  The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded HP V-Class.a 

No. of Processors Used Wall Clock Time 
(s) 

User CPU Time 
(s) 

System CPU Time 
(s) 

1 3524 3244 8 
2 1698 3301 72 
3 1203 3303 186 
4 1974 3625 2302 
5 1871 3630 2696 
6 2554 3837 4955 
7 3166 4051 7089 
8 2915 3915 7223 

a The job was run for 200 time steps. 

 

Table 10.  The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded SGI Origin 2000.a 

No. of Processors Used Wall Clock Time 
(s) 

User CPU Time 
(s) 

System CPU Time 
(s) 

1 503 390 5 
5 225 512 7 

10 256 729 9 
15 360 935 11 
20 1322 2263 36 
25 2119 3423 138 
30 3691 4414 188 

a The job was run for 40 time steps. 
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Glossary 

cc-NUMA Cache coherent nonuniform memory access 

CPU Central Processing Unit 

CTA Computational Technology Area 

DC Distributed Center 

HPC High-Performance Computing 

HPF High Performance Fortram 

MFLOPS Million Floating Point Operations Per Second 

MPI Message Passing Interface 

MPP Massively Parallel Processor 

MSRC Major Shared Resource Center 

PVM Parallel Virtual Machine 

SHMEM Low latency message passing library developed by CRAY 
Research for the T3D and T3E product lines. 

SMP Symmetric Multiprocessor—a term normally only applied to 
shared memory systems using hardware memory coherency 
protocols. 

SPMD Single Program Multiple Data 
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